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A model involving only a small number of parameters provides a convenient

way of interpreting diffraction patterns from MCM-41 materials. Each

parameter of the model has a clear physical meaning, and this approach is

clearly superior to extracting pore structure information by ®tting Gaussians to

an observed diffraction pattern.

1. Introduction

The class of porous materials known by the designation MCM-

41 has attracted much attention since their synthesis was ®rst

reported by Kresge et al. (1992). Unlike many other porous

materials, the pores of MCM-41 are long cylinders of uniform

diameter, packed uniaxially to form a quasi-periodic hexag-

onal lattice. Moreover, the pore diameter is adjustable over

an approximate range of 1 to 10 nm by varying the size of

template materials used to form the pores. With the relative

volume of the pores constituting a very large volume fraction

(up to 80%) of a typical sample, MCM-41 materials are well

suited for studies ranging from capillary melting (Edler et al.,

1996), adsorption/desorption of gases (Rathousky et al., 1995)

and studies of molecules in con®ned geometries (Baker et

al., 1997; Takahara et al., 1999). The chemistry of MCM-41

materials, the pore formation mechanism and the numerous

applications these materials offer have been recently reviewed

by Ying et al. (1999).

In general, the synthesis begins with mixing a silicate

solution with a surfactant that self-assembles into cylindrical

micelles. The cylinders are straight over long distances and the

length greatly exceeds the diameter. The length of the

hydrocarbon tails of the surfactant determines the cylinder

diameter. At a suf®ciently high density, these cylindrical

micelles pack into a hexagonal arrangement with the silicate

particles occupying the areas around the head groups of the

surfactant and the packing voids between cylinders. With this

structure formed, the surfactant is removed by heat proces-

sing, leaving the silicate as a porous matrix. The resultant

pores are nearly the same size and shape as the template

micelles.

Diffraction studies of MCM-41 have con®rmed the hexag-

onal arrangement of the pores (Kresge et al., 1992). However,

the observed diffraction peaks are intrinsically wide and fall

off rapidly in intensity, indicating that there is a degree of

disorder present within the system. One of the best X-ray

results of which we are aware, for instance, goes only to third

order (Edler et al., 1997). As a tool for analysing such a

diffraction pattern, we here propose a model that includes a

conceptually simple disorder (x2), followed by the calculation

of the expected diffraction pattern (x3). Finally, we will

explore how the calculated pattern changes as a function of

model parameters (x4).

2. Description of the model

The model is an array of in®nitely long cylinders of ®nite

radius r (e.g. 15 AÊ ) arranged in a hexagonal array within a host

material. The arrangement, however, is not perfect. If we

de®ne a perfect hexagonal lattice by choosing one of the

cylinders as the origin, the nearest-neighbour cylinders more

or less lie on lattice points but the order is progressively lost

for cylinders further from the origin. The lattice parameter of

the perfect lattice is a (e.g. 40 AÊ ) and, since there is always

some host material between adjacent cylinders, a is necessarily

>2r. We de®ne a displacement vector ul which is the measure

of displacement of a cylinder from its ideal lattice position l.

Since the `errors' caused by non-perfect arrangement accu-

mulate at larger distances, the magnitude of ul, on average,

increases with the length of l. In order to achieve simple

analytical results, we propose that the distribution of ul with a

value of jlj is a Gaussian whose variance is given by

hu2
l i � "jlj: �1�

The constant " is an important model parameter as it controls

how quickly the order is lost as one moves away from the

arbitrarily chosen origin. The dimensions of ", a, r, u and l are

all aÊngstroms. In addition, one can de®ne an overall size, Rlimit,

of the array over which (1) is valid. This size could range from

~100 AÊ (small array), to a few thousand aÊngstroms (large

array), to in®nity (micrometre-size array). Note that Rlimit is

not necessarily the physical size of a sample or the size of

individual grains in the case of a powder sample. Rather, it is

the typical size of a `correlated region'.

The model we propose above is not conceptually new. It is a

special case of the hexagonal paracrystalline lattice described

by Hosemann & Bagchi (1962) where the degree of order is

relatively high. In the vocabulary of these authors, the order in



MCM-41 is high enough to produce `discontinuous small-

angle scattering', i.e. more than one interference maximum

exists in the calculated structure factor.

We now consider the contrast that can be detected with a

diffraction experiment. If the experiment is limited to small

scattering angles so as not to see diffraction corresponding to

the atomic spacings, we are sensitive only to the `density'

difference between the host material and the cylinders. Let �
be the difference and, for simplicity, we arbitrarily assign the

host material a density of zero and that of the cylinders �. For

X-ray diffraction, � is given by electron density times the

classical radius of an electron, and for neutron diffraction it is

the difference in scattering-length densities of the materials

concerned.

3. S(Q) of the model

We will carry out the calculation in two parts: (i) the form

factor of an individual pore represented by a cylinder, and (ii)

the lattice sum over the points that are arranged in the

imperfect hexagonal array. The two parts are subsequently

combined by means of the convolution theorem to calculate

the overall scattering cross section S(Q).

3.1. Form factor of a cylinder

The form factor of a cylinder that is in®nitely long in the z

direction and has a radius r is given by the Fourier transform

Fc�Q� �
R
��r� exp�iQ � r� dr; �2�

where

��r� � � if the xy projection of r; rxy � r

0 if rxy > r.

�
The result is the Fourier transform of a circle, given in terms of

the Bessel function J1(rQxy), times a � function in the z

direction.

Fc�Q� � �2�r�=Qxy�J1�rQxy���Qz�: �3�

The � function indicates that one can only see diffraction from

an in®nite cylinder if its axis is perpendicular to Q. This has an

important effect for powder specimens where each grain

contains parallel pores but the grain orientation is random. If

one collects diffraction data using a standard diffractometer

(monochromatic incident beam and a single detector that

scans in the horizontal plane), the measured intensity at a

particular Q comes only from those grains that are so oriented

that their pores are perpendicular to Q. If �Qz is the vertical

size of the resolution `window' of the diffractometer, the

number of gains contributing to measured intensity is directly

proportional to the ratio (�Qz=Q), a factor that needs to be

included in analysing the data.

For a long but ®nite-length cylinder, the � function broadens

into a Gaussian peak. Provided the width of the Gaussian is

much less than �Qz, the above discussion on the effect of

vertical resolution is valid.

3.2. Lattice sum over points arranged in an imperfect
hexagonal array

We now consider the imperfect hexagonal array as

explained in x2. However, instead of cylinders, we consider a

2D array of scattering centres that mark the geometrical

centres of the cylinders. The scattering cross section of any

collection of scattering centres, in the limit of weak scattering,

is given by

So�Q� � F�o �Q�Fo�Q�; �4�
where

Fo�Q� �
P

j

exp�iQ � Rj� �5�

is the geometrical structure factor. The index j is de®ned such

that Rj is a vector terminating at scattering centre j.

For a small array, we can evaluate the sum of (5) numeri-

cally. For large and in®nite arrays, we will evaluate the sum

statistically by arguing that the scattering centres are all

equivalent and their surroundings, on average, are identical.

The lattice vector l is the position of Rj if we had a perfect

hexagonal lattice, i.e.

Rj � l� ul:

Therefore,

Fo�Q� �
P

l

exp�iQ � l�hexp�iQ � ul�i: �6�

The symbol h . . . i indicates that we will have to evaluate this

exponential for a typical distribution of ul. In terms of ul, the

projection of ul onto Q and a Gaussian distribution g�u0l�, we

evaluate R1
ÿ1

exp�iQu0l�g�u0l� du0l � exp�ÿ 1
4 Q2"jlj�: �7�

In the last step, we have made used of the fact that the

direction of ul is random and

hu02l i � 1
2 hu2

l i
for any projection.

Substituting (7) in (6) gives

Fo�Q� �
P

l

exp�iQ � l� exp�ÿ 1
4 Q2"jlj�: �8�

There are several (approximate) ways of evaluating the above

2D-lattice sum. The most obvious way, of course, is to do the

sum numerically to a cut-off Rlimit. However, a further insight

of the 2D sum could be obtained by ®rst considering the result

of a 1D sum along a certain direction in real space. We present

the following case study as an example.

3.3. The 1D sum along the a axis

As a subset of the terms contained in (8), let us evaluate the

sum

F1D
o �Q� �

P
n

exp�iQ � an� exp�ÿ 1
4 Q2"ajnj�; �9�
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where n is an integer. This sum is easily carried out as two

geometric progression series, giving

F1D
o �Q� �

sinh�14 Q2"a�
cosh�14 Q2"a� ÿ cos�Q � a� : �10�

The 1D sum for Qjja, a � 40 AÊ and " � 0:4 AÊ is plotted in

Fig. 1. The variation of F1D
o looks very much like scattering

from a liquid, as ®rst pointed out by Emery & Axe (1978) (also

see Axe, 1980). The periodicity is due to the cos�Q � a� term in

the denominator as the hyperbolic functions show only

monotonic variations. Had we performed the 1D sum along

another direction in real space, the only change in (10) would

be that a is replaced by d, a vector from the origin to the ®rst

lattice point encountered in the chosen direction. Conse-

quently, the plot would look identical to Fig. 1 except that the

Lorentzian-like peaks would appear at different positions. The

2D sum of (8) is a linear combination of these 1D sums, each

weighted in proportion to the density of lattice points, which is

simply (1=d). Since the lattice-point density is highest along a,

F1D
o along a is the leading order contribution to the 2D sum.

We expect the result of the 2D sum to look similar to Fig. 1

except that |Fo| between peaks is considerably increased by the

contributions from other directions.

3.4. Numerical evaluation of the 2D sum and S(Q) for
powder samples

We now return to computing S(Q). The results in (3) and (8)

can be combined to give the structure factor of an imperfect

hexagonal array of ®nite-radius cylinders whose magnitude

squared is S(Q).

S�Q� � jFo�Q�Fc�Q�j2: �11�
The above equation gives S(Q) of a single correlated region, a

result analogous to that of a single crystal. However, most

diffraction studies on MCM-41 materials are performed with

powder samples. Even if one manages to do diffraction from a

single grain of sample (say using synchrotron radiation), it is

likely that the parallel pores of the grain form many correlated

regions, in which case one will still measure the `powder

averaged' S(Q) but without the 1=Q vertical resolution

correction factor [see (3)]. In the discussion below, we will

denote this quantity as Spwr(Q).

4. Discussion

Fig. 2 shows Spwr(Q) for a model we believe to represent the

majority of MCM-41 materials. For the solid curve, the 2D sum

of (8) was carried out to Rlimit � 800 AÊ , with the parameters

a � 40 AÊ and " � 3 AÊ . Note that the r.m.s. value

�Rlimit"�1=2 � 49 AÊ is larger than a, i.e. the order is lost by the

time the sum reaches the boundary of the correlated region.

For powder averaging, the calculation was repeated for

different directions of Q between [1,0] and [1,1] directions at

every 2�. Tests showed that this angular step was suf®ciently

small for the width of the peaks.1

The resultant Spwr(Q) contains two well de®ned peaks.

The one at Q � 0.18 AÊ ÿ1 is the (1,0) peak, the lowest-order

peak expected for the structure. The peak at Q � 0.3 AÊ ÿ1 is

actually the superposition of (1,1) and (2,0) peaks, both very

much reduced in intensity and increased in width by the

effects of parameter " (the form factor is also responsible for

reduced intensity). The solid curve shows extra scattering at Q

values below 0.1 AÊ ÿ1, which is the onset of small-angle scat-

tering caused by the ®nite size of Rlimit. We can verify this by

repeating the 2D sum over a much longer range with Rlimit set

to 4000 AÊ . The result, shown as the dashed curve, is indis-

tinguishable from the solid curve except for the low-Q region.

It should be appreciated that " is an essential parameter for

successful modelling of scattering from MCM-41 materials.

For instance, one cannot try to induce width in the diffraction

peaks by simply reducing the size of the correlated regions. As

a demonstration, we show in Fig. 3 the diffraction from a

hypothetical model with "! 0 and Rlimit greatly reduced (i.e.

Figure 1
Geometrical structure factor of 1D array of point scattering centres. The
array is in®nitely long but the order between the centres is gradually lost
with distance owing to the parameter " as explained in the text.

Figure 2
Powder-averaged S(Q) of in®nitely long cylinders, packed into an
imperfect hexagonal array. The 2D lattice sum of the array was carried out
numerically from the centre to a radius Rlimit = 800 AÊ (solid curve) or to
Rlimit = 4000 AÊ (dashed curve). The two results differ appreciably only for
Q < 0.1 AÊ ÿ1.

1 The 2� step may not be suf®ciently small if one attempts to least-squares ®t
the model to a measured diffraction pattern. For that purpose, the angular step
size should be either the incident-beam collimation used for data collection
or the transverse width of the calculated peaks before powder averaging,
whichever is larger.



perfect hexagonal arrangement over a short distance). The

peaks that correspond to the 40 AÊ lattice parameter, or the

primary peaks, do get wider, and the region between those

peaks is ®lled with secondary maxima resulting from the very

short Rlimit. Note that the acquired width of the primary peaks

is order-independent, as shown by the FWHM values written

in the ®gure. In contrast, the width arising from non-zero "
increases rapidly with Q (this effect is most apparent in Fig. 1).

The aim of many diffraction studies on MCM-41 is to see a

change in the diffraction pattern when the pores of the

structure are ®lled with a foreign material such as hydro-

carbons or water. Altering the constituent of the pores does

not affect Fo(Q), but the diffraction pattern changes because

of a change in the form factor Fc(Q). When foreign materials

are successfully incorporated into MCM-41, there are two

scenarios: (I) the material ®lls the pores completely, or (II) the

material coats the inside wall of the pores, leaving a vacant

space in the middle. We will now use the proposed model to

explore how sensitive diffraction techniques can be in differ-

entiating these two scenarios.

Scenario (I): In general, the foreign material will have a

`density' different from the host material and the original

constituent of the pore (e.g. empty space). Therefore, ®lling

the pores completely with a foreign material will change the

contrast factor � in (3). The measured absolute intensities will

change but the shape of the diffraction pattern remains the

same. However, if one could `contrast match' the foreign

material to the host (often an easy task for neutron diffrac-

tion), the diffraction pattern will completely disappear.

Scenario (II): The form-factor calculation will be more

complicated because each pore now is a cylinder of ®nite wall

thickness, with the wall density different from that of both the

host material and the central core. Again, if the foreign

material is contrast matched to the host material, the analysis

is simpler ± the diffraction pattern would change as if the

cylinder radius were smaller. We show in Fig. 4 how sensitive

diffraction is to this change. The model represented by the

solid curve is identical to Fig. 2 (replotted as the dashed curve)

except that the form-factor radius is reduced by 1 AÊ . Note that

not only the absolute but also the relative intensities of the

peaks change ± a change that is far easier to detect in an

experiment.

5. Conclusions

The model we have presented is generally applicable in

describing the scattering from MCM-41 materials. We show

that variations in a relatively small parameter set can produce

markedly different diffraction patterns. The model therefore

allows for easy analysis and comparison of bare MCM-41

materials as well as the systems that use MCM-41 as a host

matrix.

We expect that the basic concept, i.e. a local order that is

lost gradually with distance, can be applied to a wide range of

problems involving self-organized quasi-periodic structures.

Indeed, it is an easy task to introduce different functional

forms of `disorder' in case the simple linear (and isotropic)

disorder is found to be inadequate for a new class of materials.
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Figure 3
Powder-averaged S(Q) of in®nitely long cylinders packed into a perfect
hexagonal array of very small size. The array extends only for ten (i.e.
2Rlimit=a = 10) lattice spacings.

Figure 4
The effect on Spwr(Q) when the radius of individual pores is changed from
18 AÊ (dashed curve) to 17 AÊ (solid curve). Such a change is expected for
MCM-41 when the inside walls of the pores are coated with a thin layer of
a material that is contrast matched to the host.


